Published: Dynamic Electrical Response of Vortex Polarization in PST/STO Superlattice Thin Films

Our paper entitled “Dynamic Electrical Response of Vortex Polarization in (Pb0.9Sr0.1)TiO3/SrTiO3 Artificial Superlattice Thin Films” has been published in Appl. Phys. Lett. We found that the reorientation of dipole moments in the vortex domains is susceptible to the applied electric field pulses of 500 μs and is a reversible process. Although the centrosymmetric vortex domain structure is not considered to exhibit piezoelectricity, an evident change in the out-of-plane lattice constant with the applied electric field was revealed.

Citation: APL 121, 172904 (2022).

Published: Strong Electro-optic Effect in Mg Incorporated ZnO Thin Films

Our paper entitled “Strong Electro-optic Effect in Mg Incorporated ZnO Thin Films” has been published in Appl. Phys. Lett. We found that the Mg incorporation enhances the linear EO response significantly. In particular, the Zn0.72Mg0.28O thin film showed an effective EO coefficient of 7.6 pm/V, which is over three times larger than the reported values for ZnO-based thin films and over twice larger than that of ZnO single crystals. This study is the collaborative research with Dr. Meng of Institute of Semiconductors, Chinese Academy of Sciences.

Citation: APL 121, 152903 (2022).

2025 Energy Func. Mater. Eng. Lab., Nagoya Univ. [Internal link]